
TDDC88	–	Sammanfattning	
Didrik	Grip	–	i12didgr	

	

REQUIREMENTS	 1	

PROJECT	PLANNING	AND	PROCESSES	 6	

DESIGN	AND	ARCHITECTURE	 13	

TESTING	AND	SCM	 23	

QUALITY	 29	

	

Requirements	
“Software	requirements	express	the	needs	and	constraints	placed	on	a	software	product	that	
contribute	to	the	solution	of	some	real-world	problems.”		-	Kotonya	&	Sommerville	
	
Requirement	engineering	is	about	clarifying	the	requirements	to	avoid	misunderstandings	
and	specify	what	is	to	be	delivered	in	the	end	of	the	project.	To	avoid	misunderstandings,	it’s	
important	to	use	complete	sentences	and	use	modal	verbs	such	as	shall,	must	and	will.	
	
Elicitation	–	Understanding	the	true	needs	of	the	customer	
Can	be	obtained	either	internally	from	the	projects	goals	and	strategies	or	externally	from	
environments,	stakeholders	or	a	customer.	Some	of	the	techniques	are	interviews,	
scenarios,	prototyping	or	observations	of	current	use.	The	trick	is	to	understand	what	the	
customer	really	needs	and	not	only	what	they	explicitly	say	they	need	–	probe	thinking,	
understanding	why	the	customer	answers	as	they	do.	
	
“If	I’d	asked	my	customers	what	they	wanted,	they’d	have	said	a	faster	horse.”	–	Henry	Ford	
	
Analysis	–	Classifying	and	resolve	conflicts	between	requirements	
We	classify	the	requirements	in	different	classes	with	respect	to	e.g.	

- Functional	vs.	Non-functional	
- Source	
- Product	or	process	requirements	
- Priority	
- Scope	–	Affected	components	
- Stability	

	
This	is	often	accomplished	with	conceptual	modeling,	like	use-cases,	class-models	or	ER-
modeling:	

Use-case	modeling	
“a	particular	form	or	pattern	or	exemplar	of	usage,	a	scenario	that	begins	with	some	user	of	
the	system	initiating	some	transaction	of	sequence	of	interrelated	events.”	–	Jacobson	et	al.	

	
A	use-case	diagram	

	
A	use-case	is	a	specific	activity,	the	circles	above,	and	is	often	accompanied	by	a	description.	
Example	of	a	use-case	where	the	nouns	are	being	analyzed	and	some	are	set	as	required	
classes:	

	
A	use-case	with	classes	analysed	

30

Identifying classes: noun analysis

•machine – real noun handled
by the system

•cup – unit for beverage

•coin – detail of user and machine

•shelf – detail of machine

•pipe – detail of machine

•button– handled by the system

•sugar – detail of coffee

•whitener – detail of coffee

•cup of coffee – handled by the
system

•indicator – not discovered

A CoffeeDrinker approaches the machine
with his cup and a coin of SEK 5. He
places the cup on the shelf just under the
pipe. He then inserts the coin, and press
the button for coffee to get coffee
according to default settings. Optionally
he might use other buttons to adjust the
strength and decide to add sugar and/or
whitener. The machine processes the
coffee and bell when it is ready. The
CoffeeDrinker takes his cup from the shelf.

Class	model	
This	leads	us	to	the	class	model,	being	drawn	from	the	earlier	use-case:	

	
Class	model	of	the	earlier	use-case	

	
ER-diagram	
When	it	comes	to	required	data,	a	good	model	is	a	classic	ER-diagram	as	is	often	used	in	
database	modeling:	

	
Example	of	an	ER-diagram	

	

31

The coffee machine class model

CoffeeCustomer

Porter

CupOfCoffee

CanOfCoffee

buys

byus

0..1

0..1

0..*

0..*

makes machine

1
1

1 11
1

10..*

Interface CoinHandler Brewer

32

Data model: ER-diagram

Student

Course

Name
Personal number
Curriculum

Enrolled-in

Subject
Course code
Max-enrolment

Specification	
	
SRS	-	IEEE	Std	830-1998	
Specifies	a	good	SRS	–	Software	Requirements	Specification,	with	the	basic	issues:	

- Functionality,	what	the	software	should	do	
- External	interfaces,	how	it	interacts	with	e.g.	people	and	other	soft-	or	hardware	
- Performance,	speed	of	functions	etc.	
- Attributes,	portability,	maintainability,	security	etc.	
- Design	constraints,	language,	policies,	required	standards	or	other	limits	

	
An	SRS	should,	according	to	IEEE	830,	be	correct,	unambiguous,	rankable,	verifiable	
modifiable	etc.	It	should	only	concern	the	requirements	that	the	software	shall	meet	and	
every	requirement	should	be	open	for	only	one	interpretation.	It’s	also	important	that	the	
SRS	ranks	the	requirements	by	stability	and	necessity.	
	
The	SRS	should	NOT	however	go	into	design	details	such	as	partitioning	into	modules	or	
describe	flows	of	information.	
	
Pros:	

• Good	checklist	 	
• Many	ways	to	adapt	organization	 	
• Many	ways	to	detail	requirements	 	
• You	don’t	need	to	have	everything	

	
Cons:	

• Takes	some	time	to	read	and	understand	
• Very	general,	needs	to	be	tailored	
• Is	no	guarantee	for	a	good	SRS	

	
Characteristics	of	good	requirements	
	

• Unitary	(Cohesive)	–	The	requirement	addresses	one	and	only	one	thing.	
• Complete	–	The	requirement	is	fully	stated	in	one	place	with	no	missing	information.	
• Consistent	–	The	requirement	does	not	contradict	any	other	requirement	and	is	fully	

consistent	with	all	authoritative	external	documentation.	
• Non-Conjugated	(Atomic)	–	The	requirement	does	not	contain	conjunctions.	E.g.,	

"The	postal	code	field	must	validate	American	and	Canadian	postal	codes"	should	be	
written	as	two	separate	requirements:	(1)	"The	postal	code	field	must	validate	
American	postal	codes"	and	(2)	"The	postal	code	field	must	validate	Canadian	postal	
codes".	

• Traceable	–	The	requirement	meets	all	or	part	of	a	business	need	as	stated	by	
stakeholders	and	authoritatively	documented.	It	specifies	no	more	and	no	less	than	
what	is	required.	

• Current	–	The	requirement	has	not	been	made	obsolete	by	the	passage	of	time.	

• Unambiguous	–	The	requirement	is	concisely	stated	without	recourse	to	technical	
jargon,	acronyms	(unless	earlier	defined)	etc.	It	expresses	only	facts	and	not	opinion.	
It	is	subject	to	only	one	interpretation.	Negative	statements	are	avoided.	

• Specify	importance	–	The	requirement	must	specify	a	level	of	importance.	
• Verifiable	–	The	implementation	of	the	requirement	can	be	determined	through	

basic	possible	methods	such	as	inspection,	demonstration,	testing	or	analysis.	
	
	
User	stories	
As	a	(actor)	I	want	(something)	so	that	(benefit),	used	a	lot	in	the	Scrum	methodology.	
Example:	”As	a	student	I	want	to	buy	a	parking	card	so	that	I	can	drive	the	car	to	school.”	
Priority:	3	Estimate:	4		
	
Validation	(Formalization)	
Some	means	of	validating	requirements:	

• Prototyping	
• Simulation	
• Software	Reviews	
• Model	checking	
• Formal	proofs	
• Acceptance	testing	

	
Word	list:	
	

• Functional	requirements	–	Describes	the	functions	that	the	software	is	to	execute,	
can	be	easily	tested	by	giving	input	and	controlling	the	output.	Think	f(x)	=	y.		
Example:	“The	user	shall	be	able	to	add	an	item	to	the	shopping	basket.”	 	

• Non-functional	requirements	can	be	design	constraints	like	languages	or	quality	
measurements	such	as	response	times.	The	latter	is	also	called	performance	
requirements.	
Example:	“The	minimum	response	time	is	2.0	seconds”	or	”The	system	shall	be	
written	in	Java” 	

• Feature	–	An	USP,	a	distinguishing	characteristic	of	a	system	item.	Like	a	SMS	delivery	
notification	service.	

• RAM	–	Requirements	Abstraction	Model,	utilizing	levels	of	abstraction.	Up	to	product	
level	and	down	to	function	level.	

• Actor	–	A	user	of	a	system	in	a	use-case,	can	be	human	or	a	system.	
• Stakeholder	–	“an	individual,	group,	or	organization,	who	may	affect,	be	affected	by,	

or	perceive	itself	to	be	affected	by	a	decision,	activity,	or	outcome	of	a	project”	
Example:	Project	leader,	management,	customer,	user	group,	sponsors	etc.	
	

	 	

Project	planning	and	processes	
“A	project	is	a	temporary	endeavour	undertaken	to	create	a	unique	product	or	service”,	it	
consists	of	a	starting	point,	at	least	one	item	happening	on	the	way	and	a	goal.	There	is	
always	a	balance	between	goal	and	process,	either	you	have	a	clear	purpose	or	goal	but	no	
predefined	process	to	follow	or	you	have	a	strict	process	with	an	unclear	goal.	
	
SMART	goals	
Specific	–	Straightforward,	what	will	you	do	and	why	is	it	important?	
Measurable	–	If	you	cannot	measure	it	how	do	you	then	know	if	the	goal	is	reached?	
Agreed	upon	–	Agreed	upon	by	all	stakeholders	
Realistic	–	Possible	with	current	resources,	knowledge	and	time.	Willing	and	able	to	do	it.	
Timely	–	A	clear	time	frame	
	
Dependent	project	parameters	
The	most	important	four	parameters	to	consider	when	setting	the	goals	for	a	project	are:	
Calendar	time	–	How	much	time	do	we	need?	When	can	we	finish?	
Resources	–	What	resources	do	we	have?	Personnel,	knowledge,	computing	power,	budget?	
Features	–	What	are	our	features	that	we	want	to	implement?	
Quality	–	What	quality	do	we	require	on	the	final	product?		
	
These	four	are	highly	dependent	and	planning	a	project	means	to	take	these	into	
considerations	and	create	a	trade-off	between	them.	
	
GANTT-chart	
A	GANTT-chart	is	a	tool	to	visualize	the	process,	creating	tasks	with	a	duration	and	
dependencies	to	create	a	chart	where	we	can	prioritize	and	make	sure	the	project	gets	
finished	on	time.	

	
Example	of	a	GANTT-chart,	making	it	easier	to	visualize	the	process	and	time	approximation.	

SEPTEMBER 15, 2015 11Project Managment/Kristian Sandahl

Tasks, duration, and dependencies

Task/Activity Duration

Phases

Gantt-chart

DependencyPhase

Task A Task B

Task A is predecessor
(precursor) of Task B

	

Critical	path	
The	critical	path	consists	of	the	activities	with	the	most	time-sensitive	dependencies.	If	any	
of	these	activities	gets	postponed,	the	complete	project	falls	behind	in	time.	It	is	therefore	
critical	that	the	activities	on	the	critical	path	is	finished	on	time.	

	
The	critical	path	can	be	fetched	from	the	GANTT-chart	and	displays	the	activities	that	are	most	critical	to	the	project	finishing	on	time.	

		
Effort	estimation	
Delphi	–	Experts	make	individual	predictions	and	show	them	anonymously	for	discussion,	
repeat	if	not	converging.	
COCOMO	–	An	algorithmic	formula	where	a	numbers	of	factors	are	estimated	using	data	
from	earlier	projects.	Example:	Input:	Lines	of	code	–	Output:	Effort	(Time)	
Planning	poker	–	Agile	estimation	–	Variant	of	the	Delphi	method	where	you	have	cards	
marked	with	units	like	hours	or	“effort	points”	in	a	Fibonacci-series.	You	then	place	cards	
upside	down,	flips	them	and	discusses.	

- Remember	to	include	buffer	time!	
	
Risk	management	
Types	of	risk:	
General	risk	 Project	Specific	risk	
Example:	“A	team	member	gets	sick”	
“The	project	gets	delayed”	

Example:	“Anders	needs	to	visit	his	family	
since	his	father	is	sick”	or	hardware	issues.	

Direct	risk	 Indirect	risk	
Where	the	project	has	great	control.	
Example:	“Our	system	will	not	scale”	

Where	the	project	has	little	control.	
Example:	“The	servers	fail	due	to	an	
earthquake.”	

	
	

SEPTEMBER 15, 2015 12Project Managment/Kristian Sandahl

Critical path, slack time, and real time

Real time (estimated)

Slack (float) time

Available time = Slack time + Real time

Critical Path

General	steps	for	risk	management:	
1. Risk	identification	–	“What	can	go	wrong?”	Brainstorming	to	find	possible	risks.	
2. Risk	analysis	–	“How	bad	is	it?”	Prioritize	risks	after	magnitude	

a. Probability	–	Low,	moderate,	high,	very	high	(1-4)	
b. Impact	–	Insignificant,	tolerable,	serious,	catastrophic	(1-4)	
c. Risk	Magnitude	Indicator	=	Probability	x	Impact	

3. Risk	planning	–	“What	do	we	do	if	it	happens?”		
a. Avoidance	–	Reorganize	so	the	risk	disappears.	
b. Transfer	–	Reorganize	so	someone	else	takes	the	risk.	
c. Acceptance	

i. Mitigate	–	Lower	the	probability.	
ii. Contingency	plan	–	Lower	the	impact.	

	
The	project	plan	
Is	a	tool	for	the	project	manager	to	get	a	clear	overview	of	the	process	and	goals.	It’s	also	a	
communication	medium	between	stakeholders	and	specifies	what	should	be	done,	when	
and	by	who.	
	
Contents	of	the	project	plan:	

- Description	
o Background,	constrains,	goals	etc.	

- Organization	
o Roles,	available	knowledge	or	skills,	training	plans,	communication.	

- Time	and	Resource	Plan	
o Milestones,	tollgates,	deliverables,	activities,	resources.	

- Risk	Management	
o Risks	–	probability	and	impact.	
o Mitigation	and	contingency	plans.	

	
Common	roles	in	a	software	project	
The	ones	applied	to	our	current	project	is	marked	in	italics	

- Project	manager	–	Ensures	that	the	plan	is	being	followed	and	goals	reached.	
- Product	manager	

o Strategic	(Product	owner	or	sponsor)	–	Market	communication	and	analysis,	
budget	responsibility,	decides	features	

o Operational	–	Technical	management	and	expert,	effort	estimation	
- Configuration	manager	–	Selects	and	maintains	tools,	decides	on	what’s	in	a	release	
- Line	manager	–	The	legal	employer,	ensures	competence	development	and	a	good	

working	environment.	
- Process	manager	–	Decides	on	processes	and	adherence	to	these	
- Analysts	–	Handles	everything	that	has	to	do	with	requirements,	writes	SRS	
- Architect	–	Ensures	that	requirements	are	met	and	specifies	a	high-level	architecture	
- Lead	designer	–	Handles	prototyping	and	design	issues	not	covered	in	architecture,	

also	designs	the	UX	and	dialogue	etc.	
- Environment	manager	–	Creates	and	maintains	the	environments	for	development	

and	testing	
- Developer	–	Develops	the	system	

- Procurement	responsible	–	Buys	components	and	licenses	
- Component	adaptor	–	Adapts	external	or	reused	components	to	the	system	
- Integrator	–	Puts	the	pieces	of	the	software	together	to	a	system	
- Testers	–	Tests	and	evaluates	requirements	
- Quality	coordinator	–	Measures	quality	and	organizes	reviews	
- Deployment	manager	–	Ensures	that	the	product	is	installed	and	made	available	
- Technical	writer	–	Responsible	for	documenting	
- Course	developer	and	leader	–	Creates	and	preforms	training	material	and	courses	
- Helpdesk	–	Helps	with	and	documents	customer	issues	
- Operations	manager	–	Ensures	that	services	are	provided	to	the	customer	
- Systems	engineer	–	Performs	maintenance	and	monitoring	on	active	systems	
- Librarian	–	Manages	component	library	and	identifies	reusable	components	
- Document	responsible	–	Decides	on	standards	and	database	modeling	

	
Processes	
Processes	are	a	way	to	reach	the	goal,	they	are	an	ordered	set	of	activities	where	each	
activity	has	entry	and	exit	criteria	and	some	constraints.	
	
V-model	
The	V-model	is	ordered	by	abstraction	and	time,	where	we	often	start	and	end	in	a	high	level	
of	abstraction	and	implement	in	the	middle.	

	
An	example	of	the	V-model	where	we	have	a	level	of	abstraction	on	the	Y-axis	and	time	on	the	X-axis	

	

Waterfall	
If	we	remove	the	Y-axis,	that	is	the	abstraction	level,	from	the	V-model	we	get	the	classical	
waterfall	model.	This	is	one	of	the	oldest	models	for	development	and	includes	a	strict	
constraint	that	every	phase	is	to	be	completely	finished	before	moving	on	to	the	next.	
	

SEPTEMBER 17, 2015 6Processes/Kristian Sandahl

… also known as the V-model

Time

Maintenance

Acceptance Test
(Release testing)

System Testing
(Integration testing of modules)

Module Testing
(Integration testing of units)

Unit testing
Implementation

of Units (classes, procedures,
functions)

Module Design
(Program Design,
Detailed Design)

System Design
(Architecture,

High-level Design)

Requirements

Verify System Design

Validate Requirements, Verify Specification

Verify Implementation

Verify Module Design

Problems	with	the	waterfall	model	includes	changes	during	the	process	being	hard	to	
implement	due	to	the	strict	order	of	phases.	Also	feedback	is	hard	to	implement	and	we	
need	to	have	a	really	good	time	estimate	for	the	phases	to	finish	on	time.		
	
Advantages	with	the	waterfall	model	include	its	simplicity	and	easiness	to	understand.	Can	
be	applicable	to	short	projects	or	stable	projects	where	the	requirements	are	not	expected	
to	change	e.g.	fixed-price	contracts.	
		
Iterative	
“If	the	requirements	change,	why	don’t	we	do	it	again?”	Royce	said	in	1970	and	marked	the	
birth	of	the	iterative	model.	In	this	model	we	utilize	either	waterfall	or	v-model	and	apply	it	
to	a	number	of	iterations	where	we	get	feedback	in	the	end	of	each.	Here	we	fix	the	two	
project	parameters	of	time	and	resources	and	revisit	features	and	quality	to	update	these	to	
current	needs.	We	can	also	call	the	model	of	adding	features	in	different	iterations	an	
incremental	model,	where	you	keep	on	adding	to	what	you	have	to	get	closer	to	the	goal.	
	
Problems	with	the	iterative	model	include	the	problems	with	mapping	requirements	to	
different	iterations	and	prioritizing	the	features,	some	might	be	forgotten.	
	
Advantages	is	mostly	about	the	flexibility	and	the	spread	out	workload	of	the	members.	The	
team	can	continuously	improve	the	process	and	misunderstandings	are	made	clear	early.	
	
In	an	incremental	model	the	prioritization	of	requirements	is	important,	a	comparison	
between	customer	value	and	development	effort	is	often	used	as	a	guideline.		
	

	
Example	of	a	chart	with	customer	value	and	development	effort.	

	

SEPTEMBER 17, 2015 16Processes/Kristian Sandahl

Prioritization of requirements

Development Effort

Customer
Value

HighLow

High

Low

Sweet Spot

Avoid

RUP	-	Rational	Unified	Process	
RUP	is	an	iterative	software	development	methodology	defined	in	1997.	It	has	some	scaled	
down	versions	including	Open	and	UP	with	agile	components.	It	visually	describes	the	
workload	of	different	areas	and	has	four	main	phases	that	consists	of:	
Inception	–	Requirement	specification,	prototyping	
Elaboration	–	Architecture,	project	plan	
Construction	–	Development	and	testing	
Transition	–	Delivery	to	customer	

	
An	example	of	a	visual	RUP-representation	

	

Agile	development	methodologies	
Agile	development	includes	a	couple	of	values	that	includes	agility	to	changes	in	the	
planning	and	having	a	working	software	rather	than	comprehensive	documentation.	It	also	
includes	a	grade	of	customer	participation	rather	than	having	fixed	contracts.	A	number	of	
methodologies	fall	under	the	agile	umbrella,	such	as:	
	
eXtreme	Programming	(XP)	
XP	is	a	methodology	that	describes	in	detail	how	the	software	should	be	implemented,	some	
of	the	main	elements	are	pair	programming,	extensive	code	reviews,	test	driven	
development	and	a	flat	organization	with	frequent	communication	between	personnel.	
Some	critics	claim	that	XP	is	too	unstable	and	lack	overall	design	and	documentation.	
	
Scrum	
Scrum	defines	a	methodology	where	cross	functional	teams	develop	a	product	in	a	couple	of	
iterations,	also	called	sprints.	It	includes	a	couple	of	roles	such	as	a	product	owner	and	a	
scrum	master.	The	typical	usage	of	scrum	is	to	first	use	a	product	backlog	to	write	user	
stories	and	from	these	define	a	number	of	tasks	to	spread	out	over	the	sprints	in	a	sprint	

SEPTEMBER 17, 2015 21Processes/Kristian Sandahl

RUP – Disciplines and Phases

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

Change & Config. Mgm.

Project Mgm.

Environment.

Core
Technical
Disciplines

Core
Supporting
Disciplines

Inception Elaboration Construction Transition

backlog.	Also	frequent	scrum	meetings	and	an	extensive	review	and	retrospective	at	the	
end	of	all	sprints	to	define	lessons	learned.	
	
Kanban	
Kanban	is	a	visual	system	deriving	from	the	Japanese	word	for	billboard	(看板).	At	the	centre	
of	the	methodology	is	a	billboard	where	feedback	is	posted	for	the	management	and	taken	
into	consideration	when	implementing	changes	throughout	the	process.	One	of	the	main	
principles	are	leadership	at	all	levels,	making	everyone	responsible	for	changes	in	the	
process.	
	
Lean	Software	Development	
An	adaption	of	the	lean	principles	for	software	development,	often	favoured	by	start-up	
companies	trying	to	penetrate	the	market.	Some	principles	are	to	eliminate	waste,	decide	as	
late	as	possible	and	to	empower	the	team.	
	
Word	list:	
	

• Task/Activity	–	A	task	that	is	to	be	finished	in	the	progress	for	the	goal,	is	
represented	in	the	GANTT-chart.	

• Phases	–	A	gathering	of	tasks	into	a	phase	makes	overall	views	of	the	project	easier.	
Often	ends	with	a	milestone	or	a	tollgate.	

• Milestone	–	A	predefined	sub-goal	during	the	project	that	leads	one	step	closer	to	
the	final	goal.	E.g.	an	alpha	version	or	tests	finished.	Should	be	defined	in	SMART.	

• Tollgate	–	An	external	decision	point	where	a	stakeholder	or	other	can	abort	the	
project	or	choose	to	continue.	E.g.	a	first	prototype	or	inspection.	

• Slack	time	–	The	amount	of	buffer	time	before	the	task	affects	other	tasks	and	the	
overall	time	for	the	project.	

• Real	time	–	Estimated	time	for	the	activity	/	project.	
• Available	time	–	Slack	time	+	Real	time.	
• Status	reports	–	A	summary	of	the	current	status,	what	has	has	happened	since	the	

last	report	and	what	should	happen	next.	It	also	details	current	problems	and	risks	
and	should	be	compiled	regularly	throughout	the	project.	

• Brooks’	law	-	"Adding	manpower	to	a	late	software	project	makes	it	later"	because	
of	e.g.	training	

• Time	box	–	A	fixed	time	period	to	a	planned	activity,	deliverables	at	a	deadline	
• Software	life	cycle	–	The	life	cycle	of	the	software,	from	specification	to	

implementation	to	testing	to	maintenance.	
• Product	backlog	–	A	requirement	list	for	a	scrum	team.	
• Product	owner	–	The	person	responsible	for	the	product	backlog	in	the	scrum	team.	
• Scrum	master	–	Chairman	of	the	scrum	meetings	and	responsible	for	planning	

sprints.	
	 	

Design	and	Architecture	
The	design	and	architecture	of	a	system	is	a	description	of	how	the	system	is	/	will	be	
implemented.	A	number	of	ways	to	do	this	is	discussed	below.	The	design	process	starts	
with	decomposing	the	system	into	modules	through	communication	between	stakeholders.	
An	important	concept	in	system	design	is	reusability,	to	be	able	to	reuse	components	in	
multiple	modules.	
	
Box-and-line	diagram	
Prototyping	of	the	system	often	starts	with	drawing	modules	in	a	box-and-line	diagram,	
shortly	describing	the	modules	and	the	relations	between	these.	

	
A	simple	box-and-line	diagram	of	a	system.	

	
Views	
After	the	box-and-line	diagram	a	number	of	architectural	views	are	often	composed,	these	
describe	the	system	in	more	detail	and	is	often	drawn	up	using	UML.	The	three	views	
described	in	this	course	are:	

- Implementation	view,	shows	packages,	components	and	artifacts.	
- Execution	view,	shows	components,	connectors	and	sub-systems.	
- Deployment	view,	shows	the	physical	machines.	

	
UML	
Unified	Modeling	Language	is	a	modeling-language	in	software	engineering	that	visualizes	
the	design	of	a	system.	It	contains	of	a	number	of	specified	diagrams,	shown	below,	and	in	
this	course	we	specify	a	number	of	them.	

11

Box-and-line diagrams...

Logging

Identification &
Authentication

User
Database

Encryption /
Decryption

Packet
Handler

Session
Handler

Module, Subsystem,
Element, Entity,
Component... (many
names)

Interface

Relationship,
shows data
and/or control
flow

	
The	hierarchy	of	diagrams	in	UML	2.0.	

	
Structure	diagrams	
Class	diagram	
A	class	diagram	is	one	of	the	most	common	UML	diagrams,	it	shows	classes	of	a	system	with	
it’s	internal	attributes	and	operations.	Classes	are	also	tied	together	with	associations.	

	
A	class	with	attributes	and	operations	(functions).	

	
The	relationships	between	classes.	For	a	more	detailed	description	see	lecture	6.	

	

5

+getNoOfOrders():Integer
+getOrderStatus():String
+ addEmail(email:String)

name: String[1]
email: String [0..2]

Customer

A Single Class
Class name

attributes

operations

visibility
+ public
- private
protected
~ package

Multiplicity
1 exactly one
0..1 Zero or one
* Zero or more

(same as 0..*)
2..8 Between 2 and 8

Return type
Parameter

Relationships - overview and intuition

25

Association
(with navigability)

BA "A" has a reference(s) to
instance(s) of "B". Alternative: attributes

AggregationBA

BA Composition

Avoid it to avoid misunderstandings

An instance of "B" is part of an instance of "A",
where the former is not allowed to be shared.

BA
1) "A" inherits all properties and operations of "B".
2) An instance of "A" can be used where a

instance of "B" is expected.
Generalization

BA Realization "A" provides an implementation of the interface
specified by "B".

"A" is dependent on "B" if changes in the
definition of "B" causes changes of "A".BA Dependency

Deployment	diagram	
Consists	of	artifacts	that	utilizes	components	and	relationships	between	these	through	
communication	paths	to	create	a	overview	of	the	system.	
	

	
A	component	diagram	consisting	of	artifacts	that	utilize	the	components	Shopping	Cart	and	Orders.		

	
A	system	with	server	and	a	client	with	cryptography	artifacts.	

	
A	couple	of	central	concepts	of	designing	the	deployment	view	is:	

- Coupling,	dependency	between	modules	–	we	want	low	coupling	due	to:	
o Replaceability	
o Enable	changes	to	single	modules	without	affecting	the	system	
o Testability	and	isolating	errors	
o Understandability	

- Cohesion,	relations	between	internal	parts	of	the	module	–	we	want	high	cohesion	
o Easier	to	understand	
o Easier	to	maintain	
o Every	part	does	what	it	is	supposed	to,	with	low	cohesion	they	have	nothing	in	

common	and	are	supposed	to	be	in	separate	modules	
	

Deployment view in UML

18

<<artifact>>
clientCrypto.jar

<<artifact>>
serverCrypto.jar

<<use>>

<<protocol>>
TCP/IP

Node, physical hardware

Communication path

<<client>> <<server>>

Package	diagram	
Shows	the	packages	to	support	the	system.	To	get	a	view	of	what	do	we	need	to	design	and	
what	already	exists	and	also	to	know	where	things	are	for	future	usage.	

	
	

Behaviour	diagrams	
Use	case	diagram	
These	have	been	covered	in	the	previous	chapter	about	requirements.	
	
Activity	diagrams	
Represent	an	activity	from	start	to	end,	like	a	brainstorming	process	shown	below.	The	
shapes	of	an	activity	diagram	are:	

• rounded	rectangles	represent	actions.	
• diamonds	represent	decisions.	
• bars	represent	the	start	(split)	or	end	(join)	of	concurrent	activities.	
• a	black	circle	represents	the	start	(initial	state)	of	the	workflow.	
• an	encircled	black	circle	represents	the	end	(final	state).	

	
An	activity	diagram	of	a	brainstorming	process.	

	
State	Machine	diagrams	
Quite	similar	to	the	activity	diagram	but	represents	current	states	and	actions	between	
these.	A	hollow	circle	represents	the	end,	if	any.	
	

	
State	machine	diagram	of	a	coin	handler	in	a	vending	machine.	Notice	no	hollow	circle,	therefore	no	end.	

	

	
Sequence	diagram	
A	sequence	diagram	is	an	interaction	diagram	that	shows	the	operation	of	processes	with	
one	another	over	time.	Blocks	represent	the	timeline	of	the	objects	specified	at	the	top.	

	
A	sequence	diagram	for	a	coffee	machine,	with	the	customer	as	an	external	actor.	

State machine diagram

checking idle
insertCoin()/checkCoin(self)

For class
CoinHandler:

state trigger event,
causing transition

action, reaction
to the event

start state marker

this object
transiton

falseCoin()/returnCoin(self)

7

Sequence diagram
with several objects

: CoffeeCustomer

: Interface : CoinHandler : Brewer

insertCoin transport

{ 0 < 5s}

litIndicators
coinAccepted warmUp

pressButton(b1)
makeOrder(o1)

pourCoffeepourCoffee

Timing
constraint

Return message

13

	
Fragments	of	a	sequence	diagram	can	be	grouped	to	enable	loops.	

	

	
Or	conditional	branches.	

	
Design	patterns	
A	design	pattern	is	a	standard	solution	to	a	system	design	to	enable	reuse	of	information	
and	components.	A	number	of	patterns	are	common	use,	in	e.g.	the	three	below.	
	
Strategy	
If	you’re	going	to	implement	an	object	that	has	a	behavior	that	depends	on	a	number	of	
conditionals.	E.g.	a	superclass	of	animals	and	subclasses	that	can	either	fly	or	not,	you	can	
make	an	interface	that	is	Flys	that	implements	IsFlying	or	CantFly.	Then	you	set	the	
individual	animal	to	either	at	runtime.	

Combining fragments of sequence
diagrams

:Order :TicketDB :Account

SD processOrder

create

Get existing customer dataref

loop

[get next item]
reserve(date,no)

add(seats)

answer
destruction

loop condition

loopgate

14

More fragments of sequence diagrams

:Order :TicketDB

loop
[get next item]

reserve(date,no)

add(seats)
alternate branches

reject

alt [available]

[unavailable]

nested conditional

guard condition

17

	
A	Strategy	pattern	with	animals	that	can	either	fly	or	not.	flyingType	is	set	to	either	at	runtime.	

	
Observer	
Is	a	pattern	between	a	subject	and	one	or	more	observers	that	need	an	update	every	time	
something	changes	in	the	subject.	Think	of	it	as	a	subscription	to	a	stock	market	(subject)	
and	observers	(investors)	that	gets	notified	whenever	the	price	changes.	
	

	
The	observer	pattern	with	interfaces	for	the	subject	and	observer.	The	subject	saves	observers	in	an	array.	

	
Façade	
A	unified	interface	to	a	subsystem	to	make	it	easier	to	use,	this	is	to	protect	the	contents	of	
the	subsystem	and	make	it	able	to	change	parts	of	it	without	having	to	change	the	entire	
system.	

	
A	system	without	façade,	the	subsystem	is	within	the	square	and	external	parts	are	connected	where	needed.	

Example: Facade

	
The	same	system	with	a	façade	applied,	to	enable	changes	in	the	subsystem	without	affecting	external	parts	

	
Architecture	Styles	
A	number	of	architecture	styles	also	exists	and	should	be	taken	into	consideration,	these	are	
more	related	to	the	architecture	of	a	system	rather	than	the	design	patterns	described	
above.	
	
Client-server	
Describes	decisions	of	how	much	code	and	workload	should	be	distributed	between	the	
client	and	the	server.	

	
Three	common	structures	of	client-server	architecture,	two-tier	with	fat	or	thin	client	and	the	three-tier	structure.	

	
	 	

Example: Facade

Facade

32

1. Client-Server

Presentation
layer

Business
Layer

Client

Server

Data
management

Two-Tier, Fat-client

Presentation
layer

Business
Layer

Client

Server

Data
management

Two-Tier, Thin-client

Presentation
layer

Client

Middle-ware

Business
Layer

Server

Data
management

Three-Tier

- Heavy load on server
- Significant network traffic

+ Distribute workload on clients
- System management problem, update
software on clients + Map each layer on separate hardware

+ Possibility for load-balancing

Layered	
A	layered	architecture	has	a	clear	structure	between	high-level	to	low-level	interfaces	where	
communication	is	only	between	directly	linked	layers.	Some	bridging	can	be	accepted.	

	
A	layered	architecture.	

Pros:	
- Easy	reuse	of	layers	
- Support	standardization	
- Dependencies	and	modifications	are	kept	local	
- Supports	incremental	developing	

Cons:	
- Could	give	performance	penalties	
- Layer	bridging	overrides	modularity	

	
Pipe-and-filter	
Consists	of	decomposing	complex	processes	into	filters	that	perform	a	process	and	then	
sends	the	data	forward	though	pipes.	Think	of	this	as	the	stages	in	a	pipeline	CPU-
architecture.	

	
An	example	of	a	pipe-and-filter	architecture.	

	
SOA	-	Service-oriented	architecture	
Consists	of	decomposing	the	system	into	components	that	provide	services	for	other	
components	via	communication	protocols.	Here	we	view	the	system	not	as	a	collection	of	
hardware	or	software	but	as	a	collection	of	services.	This	is	common	on	most	modern	web-
platforms,	a	prime	example	being	Amazon	that	spread	out	their	services	on	partner	
companies	to	enable	easy	scaling	of	their	system.	
	

33

2. Layers

layer 3

layer 2

layer 1

layer 3
layer 1

layer 3

Highest
Abstraction

Defined
Interfaces

Client

IP

Ethernet

Application

Transport

Network

Data link

SSL

HTTP

Server

TCP/UDPTCP/UDP

IP

Ethernet

SSL

HTTP In a “pure” layered model,
only the immediate below
layer can be accessed

Layer bridging – can
access lower than the
closest one

Documentation	of	design	
- System	overview,	a	brief	description	stating	

o Who	the	users	are	
o The	main	requirements	and	constraints	including	quality	factors	
o Any	important	background	information	
o A	“mental”	model	of	the	system	

- Structural	views,	give	an	overview	and	describe	each	element	and	all	relations.	
o Implementation	view	
o Execution	view	
o Deployment	view	

- Mapping	between	views,	describe	how	the	views	relates	to	increase	understanding.	
- Behaviour	views,	to	describe	behavior	for	elements	by	e.g.	texts,	sequence	diagrams	

or	state	machines.	
- Rationale,	a	motivation	to	why	the	design	is	as	it	is	and	what	would	happen	if	you	

change	it.	
	
Word	list:	

• Module	–	A	decomposed,	atomic	part	of	the	system.	
• Prototyping	–	An	iterative	process	of	decomposing	the	system	into	modules.	
• Artifact	–	Physical	code,	a	file	or	a	library	in	a	component	diagram.	
• Component	–	The	artifact	implements	a	component.	Like	the	artifact	

“clientcrypto.jar”	implements	the	component	Encryption.	
	 	

Testing	and	SCM	
Testing	
After	we	built	the	system	we	need	to	test	it,	two	central	concepts	are:	
Validation:	Are	we	building	the	right	system?	
Verification:	Are	we	building	the	system	right?	
	
Testing	is	about	making	sure	that	we	get	the	correct	output	from	the	different	modules	and	
that	we	get	the	result	that	we	expected	from	the	system.	The	system	is	executed,	the	results	
are	observed	and	an	evaluation	is	made.	
	
Either	the	developers	do	the	testing,	they	have	a	understanding	of	the	system	but	the	risk	is	
that	they	would	test	too	gently	with	fear	of	not	having	deliverables	at	the	end	of	the	project.	
Or,	independent	testers	can	learn	about	the	system,	they	will	try	hard	to	break	the	system	
and	is	driven	by	quality.	
	
Black	box	testing	
Functional	testing,	given	the	input,	the	software	shall	provide	the	correct	output.	Establish	
confidence	for	the	complete	system,	but	the	system	can	still	contain	internal	bugs.	
	
Includes	three	types	of	testing:	

- Exhaustive	testing	–	Testing	with	all	possible	input	variables	to	the	program	
- Equivalence	class	testing	–	Testing	all	equivalent	sets	of	data,	with	equivalent	

meaning	that	it	is	treated	the	same	by	the	system.	E.g.	if	the	rule	is	that	if	you	are	18	
years	or	older	you	can	borrow	max	100,000,	but	no	less	than	10,000.	The	equivalent	
classes	are:	

o EC1:	age	<	18	
o EC2:	age	>=	18	
o EC3:	sum	<	10,000	
o EC4:	10,000	<=	sum	<=	100,000	
o EC5:	sum	>	100,000	

- Boundary	value	testing	–	Focuses	on	the	boundaries	between	equivalent	classes.	So	
we	test	one	point	on	the	boundary,	one	lower	and	one	higher.	

	
White	box	testing	
Seeks	fault	within	the	system,	trying	to	find	inputs	and	outputs	so	that	a	certain	operation	
inside	the	module	is	executed.	Seeks	out	bugs	actively.	
	
	 	

Unit	testing	
Tests	being	run	when	developing	single	components,	before	accepting	them	into	the	system.	

	
Unit	tests	are	being	run	on	single	components,	while	integration	testing	takes	place	before	integration	into	modules..	

	
Integration	testing		
Are	tests	run	when	integrating	single	components	into	integrated	modules.	Have	four	main	
strategies:	

	
Each	letter	represents	a	component;	the	complete	tree	is	the	integrated	module.	

	
Big-bang	
Integrates	all	components	in	one	big-bang,	thereafter	tests	the	complete	module.	Provides	
difficulty	to	isolate	defects	found	and	had	a	possibility	to	miss	critical	defects,	but	is	quick.	
	
Bottom-up	
Tests	from	the	bottom	up,	i.e.	(E,	F,	B)	&	(D,	G,	H)	is	tested	before	integrating.	Pretend	
components	called	drivers	are	used	to	mimic	(A)	and	test	these	sub-systems	individually.	
Disadvantages	is	that	we	can	catch	very	big	interface	defects	late	and	we	require	good	
drivers	for	testing.	Advantages	include	easy	use	of	incremental	development.	
	

43

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

Tested components

Tested components

Unit
test

Unit
test

Integration
test

Design Specification

Integrated modules

Top-down	
Tests	from	the	top	down,	i.e.	(A,	B,	C,	D)	are	tested	before	integrating	with	(E,	F)	&	(G,	H).	
Here	we	use	pretend	components	called	a	stub	to	mimic	the	output	of	lower	level	
subsystems.	Stubs	are	easier	to	write	than	drivers	and	we	can	discover	general	design	
defects	early	but	we	require	many	stubs	and	the	basic	functionality	of	the	module	is	tested	
late.	
	
Sandwich	
A	combination	of	bottom-up	and	top-down	testing	where	we	test	(A,	B,	C,	D),	(E,	F,	B)	&	(G,	
H,	D)	in	parallel.	Is	good	if	you	have	a	big	system	with	many	layers	but	require	more	
resources	and	doesn’t	test	the	individual	subsystems	thoroughly.	
	
System	testing	
Before	integrating	the	modules	into	the	complete	system,	we	need	a	couple	of	tests	before	
it’s	accepted	and	in	use.		

	
The	four	stages	of	system	testing.	

Function	test	
Tests	functional	requirements.	Testing	one	function	at	a	time,	useful	to	have	an	independent	
test	team	who	knows	the	expected	actions	and	output.	
	
Performance	test	
Tests	non-functional	requirements.	Consists	of	a	number	of	tests	based	on	the	requirements,	
e.g.	timing	tests,	volume	tests,	security	tests,	maintenance	tests	and	usability	tests.	Often	
run	by	gathering	statistical	data.	
	
Acceptance	test	
Test	that	the	users	or	customers	needs	are	fulfilled.	Consists	of:	

- Benchmark	tests	–	Specially	designed	test	cases	
- Pilot	tests	–	In	everyday	work	

o Alpha	test	–	At	developer’s	site,	in	a	controlled	environment	
o Beta	test	–	At	one	or	more	customer	sites	

- Parallel	tests	–	Testing	the	new	system	in	parallel	with	the	previous	one.	
	

Installation	test	
Thorough	testing	at	the	customers	site,	if	the	beta	test	has	been	successfully	run	at	the	
customers	site	this	test	might	not	be	needed.	
	
Typical	faults	in	the	system:	

- Algorithmic	–	Division	by	zero	
- Computation	&	Precision	–	Wrong	order	of	operations	
- Documentation	–	Documentation	doesn’t	match	code	 	
- Stress/Overload	–	Data	size	(dimensions	of	tables,	size	of	buffers)	 	
- Capacity/Boundary	–	x	devices,	y	parallel	tasks,	z	interrupts	 	
- Timing/Coordination	–	Real-time	systems	
- Throughout/Performance	–	Speed	doesn’t	match	requirements	 	
- Recovery	–	Power	failure	
- Hardware	&	System	Software	–	External	connections	
- Standards	&	Procedure	–	Doesn’t	meet	organizational	standard	-	difficult	for	

programmers	to	follow	each	other.	
	
Termination	problem	
How	do	you	know	when	to	stop	testing?	It	is	influenced	by:	

- Deadlines	
- Test	cases	with	a	decided	percentage	passed	
- Test	budget	depleted	
- Coverage	of	code	

	
Full	path	coverage	has	been	reached	when	all	possible	paths	though	a	system	has	been	
executed.		
	
Software	Configuration	Management	(SCM)	
When	developing	a	large	size	software,	you	need	to	have	some	sort	of	system	to	keep	track	
of	changes	throughout	the	process.	If	one	developer	makes	a	change	and	another	developer	
makes	another	change	we	need	some	sort	of	system	to	merge	these	together.	This	is	where	
SCM	is	utilized.	
	
Continuous	integration	
The	practice	of	continuous	integration	means	that	you	integrate	changes	frequently	(most	
often	daily),	important	practices	are:	

- Automated	building	of	the	system	
- Automated	testing	of	the	system	
- The	use	of	SCM	systems	for	integrating	code	

	 	

Revision	control	
Revision	control	systems	are	central	in	SCM,	we	have	a	unified	repository	with	a	trunk	and	a	
number	of	independent	branches.	If	you	make	a	local	change	you	merge	this	with	a	unified	
branch	and	then	commits	the	changes	to	the	trunk.	

	
The	versions	of	a	revision	control	system,	with	the	main	trunk	and	two	branches.	

	
	
Centralized	(SVN)	
Subversion	(SVN)	is	a	common	centralized	revision	control	system	where	the	code	repository	
is	centralized	on	a	server.	You	then	download	a	local	working	copy,	make	your	changes,	and	
merges,	solving	any	conflicts	before	you	commit	and	upload	your	changes	to	the	repository.	
All	changes	are	kept	centrally	on	the	server	and	the	local	version	is	just	a	copy	of	the	current	
working	version.	
	
Distributed	(Git)	
Git	is	however	a	distributed	revision	control	system	where	the	repository	is	locally	on	your	
own	computer	and	the	centralized	working	version	is	the	current	one.	Here	you	keep	all	the	
versions	locally	and	can	commit	to	it	several	times	before	pushing	(uploading)	to	the	central	
server.	
	
Word	list:	

• Error	–	When	people	make	mistakes	while	coding.	
• Fault	–	A	defect	that	is	the	result	of	an	error.	Faults	of	commission	occurs	when	we	

enter	something	correct	into	an	incorrect	representation	while	faults	of	omission	are	
when	we	fail	to	enter	correct	information.	

• Failure	(anomaly)	–	a	failure	occurs	when	a	fault	executes,	i.e.	only	on	faults	of	
commission.	

• Oracle	–	The	one	who	decides	what	is	a	passed	test,	can	either	be	an	expert	human	
or	an	automated	system.	E.g.	“Values	between	0.99	and	1.01	is	accepted	outputs”.	

• Regression	testing	–	The	practice	of	testing	the	complete	system	when	a	new	
component	has	been	integrated.	

• Smoke	testing	–	Test	only	the	most	critical	parts	of	a	system	quickly.	
• Jenkins	–	A	tool	for	automated	testing.	

• Trunk	–	The	main	working	code	that	is	being	developed	in	a	revision	control	system.	
• Branch	–	A	smaller	part	being	branched	out	from	the	trunk	to	implement	e.g.	a	

function	or	a	component	before	integrating	into	the	main	trunk.	
• Merge	–	The	process	of	integrating	code	into	a	branch	or	the	main	trunk	from	your	

local	repository.	
• Commit	–	Uploading	local	changes	to	the	central	revision	control	system.	

	
	 	

Quality	
Factors	
A	number	of	measurable	software	quality	factors	exist;	these	are:	

• Correctness	
• Reliability	
• Efficiency	
• Usability	
• Integrity	
• Maintainability	
• Flexibility	
• Testability	
• Security	

• Portability	
• Reusability	
• Interoperability	
• Survivability	
• Safety	
• Manageability	
• Supportability	
• Replaceability	
• Functionality		

	
Software	reviews	-	Inspection	
Software	inspection	is	implemented	throughout	the	process	to	find	defects	and	improve	the	
process	itself.	It	is	a	systematic	peer	examination	and	not	testing.	Everything	from	the	SRS	to	
design,	source	code,	process	descriptions	and	installation	procedures	can	and	should	be	
inspected	to	ensure	quality.	
	
Participants	(Roles)	of	an	inspection,	should	be	2-6	persons:	

- Leader	(moderator)	-	planning	and	organizing	the	process	of	inspection.	
- Recorder	-	documents	the	inspections	defects,	results	and	recommendations.	Can	be	

the	same	person	as	leader.	
- Reader	-	informs	the	software	product	and	highlights	important	aspects.	
- Author	-	performs	rework	to	meet	criteria.	Shall	not	be	leader,	recorder	or	reader.	
- Inspector	-	identifies	and	describes	defects,	can	be	assigned	specific	topics.	All	

participants	are	inspectors.	
	
Process	of	an	inspection:	

- Input	–	responsible:	Author	
o Objective	statement	
o Software	products	or	artifacts	to	be	inspected	
o Inspection	procedures	
o Reporting	forms	
o Known	defects	
o Source	documents	–	SRS,	descriptions,	documentation	

- Plan	and	overview	–	responsible:	Leader	
o Identifying	the	team	and	assigning	responsibilities	
o Schedule	meetings	
o Distribute	material	
o Specify	scope	and	priorities	
o Introduce	the	product	(Author)	

- Individual	checking	–	responsible:	Inspectors	
o Exam	the	product	individually	and	report	all	defects	to	leader	

§ 2	–	3	pages	per	hour	or	100-200	lines	of	code	standard	rate	
- Inspection	meeting	–	Leader,	Recorder,	Reader	and	Inspector	

o Inspect,	produce	a	defect	list	
o Review	list	and	make	an	exit	decision:	

§ Accept	with	no	further	verification	
§ Accept	with	rework	verification	
§ Reinspect	–	redo	the	process	

- Edit	and	follow-up	
o Author	resolves	items	
o Inspection	leader	verifies	that	all	items	are	closed	

- Collected	data	
o General	inspection	data	
o Classification	–	e.g.	logic	problem,	sensor	problem	
o Categories	–	e.g.	missing,	extra,	incorrect	
o Ranking	–	e.g.	catastrophic,	marginal,	negligible	

	
Other	software	reviews:	

- Management	reviews	–	Check	deviations	from	plans,	performed	by	management.	
- Technical	reviews	–	Evaluate	conformance	to	specifications	and	standards,	

performed	by	technical	leadership	with	a	high	volume	of	materials.	
- Walk-though	–	An	informal	atmosphere	where	the	Author	presents,	leads	and	

controls	the	discussion.	
- Audit	–	External	evaluation	of	conformance	to	specification	and	standards.	

	
Software	metrics	
The	practice	of	software	metrics	is	to	measure	the	previously	mentioned	quality	factors.	We	
do	this	via	metrics,	i.e.	combinations	of	measurements;	measurements	can	consist	of:	

- No.	of	pages	in	a	document	
- No.	of	elements	in	a	design	
- No.	of	lines	of	code	
- Iteration	length	of	the	process	
- Avg.	no.	of	hours	to	learn	a	system	to	decide	quality	

	
Measurements	on	Quality	Factors	
We	often	calculate	reliability	with	Mean	Time	To	Failure	(MTTF).		
Reliability	=	MTTF/(1+MTTF)	(Estimated	probability)	
Or	Failure	intensity	=	(1-R)/t	(More	straight-forward	measurement)	
	
Similar	patterns	are:	
Availability	=	MTTF/(MTTF+MTTR)	where	MTTR	=	Mean	Time	To	Repair	
Maintainability	=	1/(1+MTTR)	
	
	 	

Cyclomatic	complexity	
The	Cyclomatic	complexity	V(G)	of	a	flow	graph	G	is	calculated:	V(G)	=	E	-	N	-	2P,	where:	

- E	=	Num.	of	edges	
- N	=	Num.	of	nodes	
- P	=	Num.	of	disconnected	parts	in	the	graph	

	
A	control-flow	graph	with	cyclomatic	complexity	V(G)	=	9	-	8	-	2*1	=	3.	This	can	represent	e.g.	two	if-statements.	

	
A	number	of	specific	metrics	also	exist:	

- Usage	based	metrics	-	Example	
o Description:	Number	of	good	and	bad	features	recalled	by	users.	 	
o Obtain	data:	Set	up	a	test	scenario.	Let	test	users	run	the	scenario.	Collect	

number	of	good	and	bad	features	in	a	questionnaire	afterwards.	
o Calculate	the	metric:	Take	the	average	of	number	of	good	and	bad	features.	
o Relevant	quality	factor:	Relevance	–	many	good	and	few	bad	features	

indicates	a	good	match	with	the	users’	mind-set.	
- Verification	and	validation	metrics	–	Example	

o Description:	Rate	of	severe	defects	found	in	inspection	of	design	description.	
o Obtain	data:	Perform	an	inspection	according	to	your	process.	Make	sure	that	

severity	is	in	the	classification	scheme.	
o Calculate	the	metric:	Divide	the	number	of	defects	classified	with	highest	

severity	with	total	number	of	defects	in	the	Inspection	record.	
o Relevant	quality	factor:	Safety	–	a	high	proportion	of	severe	defects	in	design	

indicates	fundamental	problems	with	the	solution	and/or	competence.	
- Volume	metrics	–	Example	

o Description:	Number	on	non-commented	lines	of	code.	
o Obtain	data:	Count	non-commented	lines	of	the	code	with	a	tool.	
o Calculate	the	metric:	See	above.	
o Relevant	quality	factor:	Reliability	–	it	is	often	hard	to	understand	a	large	

portion	of	code;	the	fault	density	is	often	higher	for	large	modules.	
- Structural	metrics	–	Example	

o Description:	Maximum	depth	of	inheritance	 tree.	
o Obtain	data:	Count	the	depth	of	the	inheritance	tree	for	all	classes.	
o Calculate	the	metric:	Take	the	maximum	value	of	the	classes.	
o Relevant	quality	factor:	Understandability	–	It	is	hard	to	determine	how	a	

change	in	a	higher	class	will	affect	inherited/overridden	methods.	
	

Control-flow

11

E = 9
N= 8
P= 1

Basic block

V = 3

B = 2

- Effort	metrics	–	Example		
o Description:	Time	spent	in	testing.	
o Obtain	data:	Make	sure	that	testing	activities	are	distinguished	in	time	

reporting	forms.	Make	sure	that	all	project	activities	are	reported.	
o Calculate	the	metric:	Sum	the	number	of	hours	for	all	activities	in	testing	for	

all	people	involved.	
o Relevant	quality	factor:	Testability	–	a	comparably	long	testing	time	indicates	

low	testability.	
	
Software	Quality	Assurance	(SQA)	
Quality	can	both	be	something	in	the	eyes	of	the	beholder,	something	we	learn	to	recognize	
or	value-based	on	the	market	where	we	often	can	measure	it	objectively.	A	number	of	levels	
of	quality	assurance	exists:	

- Appraisal	–	Detection	
- Assurance	–	Prediction	
- Control	–	Adjusting	
- Improvement	–	Reduce	variation,	increase	precision	

	
Usability	engineering	
Throughout	the	iterative	process	we	increase	the	maturation	and	knowledge	of	the	project	
group	and	therefore	decrease	the	risk,	this	is	done	by	evaluating	goals	of:	

- Relevance	
- Effiency	
- Attitude	
- Learnability	

	
Mature	organization	
A	mature	organization	has	a	higher	level	of	work	accomplished	and	well	defined	roles	where	
they	do	things	well,	not	necessarily	good.	
	
Capability	Maturity	Model	Integration	(CMMI)	
CMMI	is	used	to	decide	the	level	of	maturation	of	an	organization,	the	model	have	five	
stages,	each	with	a	number	of	process	areas	to	focus	on.	

1. Initial	–	Over-commited,	no	repetition	of	success.	
2. Repeatable	–	Process	adherence	is	evaluated	and	we	can	repeat	a	previous	success.	
3. Defined	–	Tailored	from	own	standards,	improved	processes	with	detailed	

descriptions.	Originally	the	minimum	level.	
4. Managed	–	Frequent	measures	and	statistics	is	kept	for	goals,	products	and	

processes.	Have	a	high	predictive	capability.	
5. Optimising	–	Everyone	committed	to	continuous	improvement	and	an	innovative	

climate	is	paired	with	evaluation	of	new	technology.	Performance	gaps	are	known.	
	
	 	

Example	process	areas	of	CMMI:	
Requirements	Management	(REQM)	–	Level	2	(Requirements)	
Purpose:	Manage	requirements	of	the	project’s	products	and	product	components	and	to	
ensure	alignment	between	those	requirements	and	the	project’s	plans	and	work	products.	
	
Requirements	Development	(RD)	–	Level	3	(Requirements)	
Purpose:	Elicit,	analyze,	and	establish	customer,	product,	and	product	component	
requirements.	
	
Technical	Solution	(TS)	–	Level	3	(Design)	
Purpose:	Select	design	and	implement	solutions	to	requirements.	Solutions,	designs,	and	
implementations	encompass	products,	product	components,	and	product	related	lifecycle	
processes	either	singly	or	in	combination	as	appropriate.	
	
Project	Planning	(PP)	–	Level	2	(Project	Management)	
Purpose:	Establish	and	maintain	plans	that	define	project	activities.	
	
Risk	Management	(RSKM)	–	Level	3	(Project	Management)	
Purpose:	Identify	potential	problems	before	they	occur	so	that	risk	handling	activities	can	be	
planned	and	invoked	as	needed	across	the	life	of	the	product	or	project	to	mitigate	adverse	
impacts	on	achieving	objectives.	
	
Process	and	Product	Quality	Assurance	(PPQA)	–	Level	3	(SQA)	
Purpose:	Provide	staff	and	management	with	objective	insight	into	processes	and	associated	
work	products.	
	
Organizational	Process	Definition	(OPD)	–	Level	3	(Process)	
Purpose:	Establish	and	maintain	a	usable	set	of	organizational	process	assets,	work	
environment	standards,	and	rules	and	guidelines	for	teams.	
	
Configuration	Management	(CM)	–	Level	2	(Process)	
Purpose:	Establish	and	maintain	the	integrity	of	work	products	using	configuration	
identification,	configuration	control,	configuration	status	accounting,	and	configuration	
audits.	
	
Verification	(VER)	–	Level	3	(Testing)	
Purpose:	Establish	and	maintain	the	integrity	of	work	products	using	configuration	
identification,	configuration	control,	configuration	status	accounting,	and	configuration	
audits.	
	
Validation	(VAL)	–	Level	3	(Testing)	
Purpose:	Demonstrate	that	a	product	or	product	component	fulfills	its	intended	use	when	
placed	in	its	intended	environment.	
	
	 	

ISO	9000-3	
Is	a	guideline	from	the	International	Organization	for	Standardization	which	is	built	on	the	
principles	of:	

- Customer	focus	
- Leadership	
- Involvement	of	people	
- Process	approach	
- System	approach	to	management	
- Continual	improvement	
- Factual	approach	to	decision-making	
- Mutually	beneficial	supplier	relationships	

	
Total	Quality	Management	(TQM)	
is	a	set	of	management	practices	throughout	the	organization,	geared	to	ensure	the	
organization	consistently	meets	or	exceeds	customer	requirements.	TQM	places	strong	
focus	on	process	measurement	and	controls	as	means	of	continuous	improvement.	
	
Has	7	main	principles:	
1.	Quality	can	and	must	be	managed	
2.	Processes,	not	people,	are	the	problem	
3.	Don’t	treat	symptoms,	look	for	the	cure	
4.	Every	employee	is	responsible	for	quality	
5.	Quality	must	be	measurable	
6.	Quality	improvements	must	be	continuous	
7.	Quality	is	a	long-term	investment	
	
Software	security	

	
CIA	–	Confidentiality,	Availability	and	Integrity	is	central	for	software	security.	

23

Security

CIA

Confidentiality • Only authorized users can
read the information
• E.g. Military

Integrity

• Only authorized users can
modify, edit or delete data.

• E.g. bank systems

Availability

• Right information is available at the right time
• Important for everyone

